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Fig. 1. In physics-based differentiable rendering, boundary integrals are crucial for handling scene parameters that control object geometry such as mesh
vertex positions. In this paper, we introduce a new Monte Carlo method to efficiently estimate boundary integrals under the differential path integral
formulation [Zhang et al. 2020]. This example consists of three objects under environmental lighting, and our technique allows efficient reconstruction of their
shapes via a single inverse-rendering optimization. (Please use Adobe Acrobat and click column (c) to see the optimization process animated.)

Boundary integrals are unique to physics-based differentiable rendering
and crucial for differentiating with respect to object geometry. Under the
differential path integral framework—which has enabled the development
of sophisticated differentiable rendering algorithms—the boundary compo-
nents are themselves path integrals. Previously, although the mathematical
formulation of boundary path integrals have been established, efficient esti-
mation of these integrals remains challenging.

In this paper, we introduce a new technique to efficiently estimate bound-
ary path integrals. A key component of our technique is a primary-sample-
space guiding step for importance sampling of boundary segments. Addi-
tionally, we show multiple importance sampling can be used to combine
multiple guided samplings. Lastly, we introduce an optional edge sorting step
to further improve the runtime performance. We evaluate the effectiveness
of our method using several differentiable-rendering and inverse-rendering
examples and provide comparisons with existing methods for reconstruction
as well as gradient quality.
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1 INTRODUCTION
Provided a virtual scene with fully specified object geometries, ma-
terial optical properties, and detector configurations, forward ren-
dering focuses on numerical estimations of a detector’s radiometric
response. Differentiable rendering, in contrast, computes gradients of
detector responses with respect to differential changes of the scene
and has applications in a wide range of areas such as computational
imaging, remote sensing, and computational fabrication.
Recently, great progress has been made in physics-based differ-

entiable rendering theory, algorithms, and systems [Li et al. 2018;
Zhang et al. 2019; Loubet et al. 2019; Nimier-David et al. 2019; Zhang
et al. 2020; Bangaru et al. 2020; Zhang et al. 2021b,a; Zeltner et al.
2021]. These advances have made it possible to differentiate a scene
representation with respect to arbitrary scene parameters includ-
ing those controlling global object geometry (e.g., the positions
of mesh vertices). Mathematically, it has been demonstrated that
physics-based differentiable rendering generally amounts to evalu-
ating interior and boundary integrals.

The interior integrals for differentiable rendering share the same
domain as those for forward rendering. To estimate these terms,
previous differentiable rendering techniques have mostly relied
on existing stochastic sampling strategies developed for forward
rendering. Recently, several differentiable-rendering-specific Monte
Carlo methods have been developed [Zeltner et al. 2021; Zhang et al.
2021a] with advantages in terms of speed and quality.
In contrast, the boundary integrals are unique to differentiable

rendering and defined on discontinuity boundaries of the ordinary
rendering integrals. To handle them, several new techniques—such
as Monte Carlo edge sampling [Li et al. 2018], reparameterization
of the ordinary rendering integral [Loubet et al. 2019; Bangaru et al.
2020], and differential path integrals [Zhang et al. 2020, 2021b]—
have been introduced. Among these techniques, differential path
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integrals introduced by Zhang et al. [2020; 2021b] have enabled the
development of sophisticated differentiable rendering algorithms
beyond unidirectional path tracing—similar to ordinary path inte-
grals for forward rendering. Unfortunately, Monte Carlo estimation
of boundary integrals under Zhang et al.’s path-space formulation
remains largely under-explored, making it difficult to solve complex
inverse-rendering problems efficiently.

In this paper, we introduce a new technique1 for efficient estima-
tion of these boundary path integrals. Concretely, our contributions
include:
• We develop a primary-sample-space guiding technique for effi-
cient importance sampling of boundary light paths (§4.1). Addi-
tionally, we show how multiple importance sampling (MIS) can
be used to combine multiple guided sampling processes (§4.2).

• We introduce an optional edge sorting step that can further im-
prove the performance of our technique (§4.3).
To show the effectiveness of our method, we compare gradient

images estimated with our method and previous techniques in Fig-
ures 6 and 7. Additionally, we conduct detailed ablation studies
in Figures 8 and 9 to evaluate individual components of our tech-
nique. Further, with our improved estimation of boundary integrals,
inverse-rendering problems under challenging conditions, such as
environmental and indirect illumination, can be solved more effi-
ciently. We demonstrate this via several synthetic inverse-rendering
examples in Figures 10 and 11.

2 RELATED WORK
Sampling for forward rendering. Monte Carlo sampling of light

transport paths has been an essential component for most, if not
all, physics-based forward rendering techniques. To this end, a com-
monly used approach is local sampling that grows light paths vertex
by vertex. This boils down path sampling to drawing an incident
direction given the exitant one (or the other way around) at each
vertex—which is typically achieved by importance sampling local
BSDFs. Previously, a large variety of BSDF models have been pro-
posed (e.g., [Phong 1975; Cook and Torrance 1982; Ashikhmin and
Shirley 2000; Oren and Nayar 1994]). Among these models, micro-
facet BSDFs (e.g., [Cook and Torrance 1982; Ward 1992; Schlick
1994; van Ginneken et al. 1998; Kelemen and Szirmay-Kalos 2001;
Pont and Koenderink 2002; Walter et al. 2007; Heitz et al. 2016; Lee
et al. 2018; Xie and Hanrahan 2018]) have been widely adopted.
Importance sampling of these models, therefore, has been studied
thoroughly and can be performed by sampling the underlying nor-
mal distributions [Walter et al. 2007; Heitz and d’Eon 2014] or via
localized Monte Carlo processes [Heitz et al. 2016].

All these sampling methods are developed for forward rendering
and can be repurposed to estimate interior integrals for differentiable
rendering. On the other hand, they are largely complementary to
the estimation of boundary integrals—which is the main focus of
this paper.

Path guiding. Recently, several methods (e.g., [Jensen 1995; Lafor-
tune andWillems 1995; Vorba et al. 2014; Müller et al. 2017; Guo et al.

1Our implementation is available at https://shuangz.com/projects/psdr-aq-sg22/.

2018; Zheng and Zwicker 2019; Müller et al. 2019]) have been devel-
oped to accelerate unidirectional path tracing for forward rendering.
Although these techniques are conceptually related to our technique,
especially the primary-sample-space guiding step, our technique
focuses on a very different use case of estimating boundary integrals
that are unique to differentiable rendering.

Physics-based differentiable rendering. Physics-based differentiable
rendering is the process of numerically computing derivatives of
forward-rendering results with respect to arbitrary scene param-
eters such as object geometries and optical material properties.
Although simple (e.g., one-bounce) light transport can be simu-
lated and differentiated approximately using soft rasterization (e.g.,
[Laine et al. 2020]) or analytical methods (e.g., [Zhou et al. 2021]),
physics-based differentiable rendering generally requires estimat-
ing (i) interior integrals given by differentiating the integrands of
corresponding forward-rendering integrals; and (ii) boundary ones
defined over discontinuities of those integrands.
Previously, the interior integrals have been mostly estimated

using path sampling methods developed for forward rendering.
Recently, Zeltner et al. [2021] have studied how various parame-
terizations (e.g., “attached” and “detached”) affect the performance
of Monte Carlo estimation of the interior integral. Additionally,
Zhang et al. [2021a] have introduced antithetic sampling (at both
BSDF- and path-level) for efficiently estimating the interior integral.
Both of these methods are orthogonal to our technique.

The boundary integrals are unique to differentiable rendering. Re-
cent works have shown that the boundary integrals can be estimated
by Monte Carlo edge sampling [Li et al. 2018; Zhang et al. 2019] or
avoided altogether by reparameterizing rendering integrals [Loubet
et al. 2019; Bangaru et al. 2020].

Further, Zhang et al. [2020; 2021b] have introduced the differential
path integral framework that formulates both the interior and the
boundary components as full path integrals, making it possible
for the development of sophisticated Monte Carlo estimators for
both components (beyond unidirectional path tracing). On the other
hand, efficiently estimating boundary path integrals (by importance
sampling full boundary light paths) remains challenging. In this
paper, we introduce a new solution to this problem.

3 PRELIMINARIES
We now briefly revisit some mathematical and algorithmic prelimi-
naries on the differential path integral formulation (§3.1) and Monte
Carlo estimation of boundary integrals (§3.2). Table 1 presents a list
symbols that are commonly used in this paper and their definitions.

3.1 Differential Path Integral
In forward rendering, the path integral formulation introduced
by Veach [1997] has allowed the development of many advanced
techniques such as bidirectional path tracing (BDPT). Under this
formulation, the intensity of a pixel is given by

𝐼 =

∫
Ω
𝑓 (𝒙) d𝜇 (𝒙), (1)

where Ω := ∪𝑁 ≥1M𝑁+1 is the path space comprised of all light
transport paths 𝒙 = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) with finite lengths (with
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Table 1. List of symbols commonly used in this paper.

Symbol Definition

𝜃 abstract scene parameter
M(𝜃 ) object surfaces
𝑓 measurement contribution
Ω (𝜃 ) path space

X motion
B reference configuration
𝑓 material measurement contribution
Ω̂ material path space
𝜕Ω̂ (𝜃 ) material boundary path space

M being the union of all object surfaces), 𝑓 is themeasurement
contribution function, and 𝜇 is the area-product measure.

Material-form reparameterization. Differentiable rendering is about
differentiating 𝐼 given by Eq. (1) with respect to some (arbitrary)
scene parameter 𝜃 ∈ R. However, when the scene geometryM de-
pends on the parameter 𝜃 , so will the path spaceΩ, making the differ-
entiation more difficult. To address this problem, Zhang et al. [2020]
propose to reparameterize the path integral (1) using some refer-
ence configurationB independent of 𝜃 coupled with amapping (or
amotion) X such that, for any 𝜃 , X(·, 𝜃 ) is a differentiable one-to-one
mapping from the reference B to the scene geometryM(𝜃 ). This
reparameterization induces a change of variable from a ordinary
light path 𝒙 = (𝒙0, . . . , 𝒙𝑁 ) to a material path �̄� = (𝒑0, . . . ,𝒑𝑁 )
via the relation 𝒙𝑛 = X(𝒑𝑛, 𝜃 ) for all 0 ≤ 𝑛 ≤ 𝑁 . Applying this
change of variable to the path integral (1) yields:

𝐼 =

∫
Ω̂
𝑓 (�̄�) d𝜇 (�̄�), (2)

where Ω̂ = ∪𝑁 ≥1B𝑁+1 is the material path space, and 𝑓 is the
material measurement contribution function that captures the
ordinary measurement contribution and the Jacobian resulting from
the reparameterization.
In theory, the reference configuration B and the corresponding

mapping X can be arbitrary as long as smoothness conditions hold.
In practice, when estimating the gradient d𝐼/d𝜃 at some 𝜃 = 𝜃0, the
reference is typically set to B =M(𝜃0).

Differential path integral. Zhang et al. [2020] have recently shown
that differentiating Eq. (2) with respect to a scene parameter 𝜃 yields
the material-form differential path integral of the form

d𝐼
d𝜃

=

interior∫
Ω̂

d𝑓 (�̄�)
d𝜃

d𝜇 (�̄�) +

boundary∫
𝜕Ω̂

𝑓 B 𝑓 S 𝑓 D d ¤𝜇 , (3)

where the interior term is obtained by simply differentiating the
integrand 𝑓 ; the boundary term, on the other hand, is unique to
differentiable rendering.
In Eq. (3), the domain of the boundary integral is the material

boundary path space 𝜕Ω̂. Unlike the material path space that is
independent of the scene parameter 𝜃 , 𝜕Ω̂ generally does depend
on 𝜃 . If we let superscripts ‘S’ and ‘D’ indicate, respectively, vertices
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Fig. 2. Boundary segments: (a) A boundary light path is comprised of a

boundary segment 𝒙S
0 𝒙

D
0 (shown in red) as well as a source and a detector

subpath (illustrated in orange and blue, respectively). The two endpoints of
the boundary segment are located on the visibility boundary of each other.

(b) A boundary segment 𝒙S
0 𝒙

D
0 can be uniquely determined with a surface

point 𝒙B ∈ M interior to the segment, along with a direction 𝝎B.

belonging to the source and detector subpaths, then each material
boundary light path �̄� = (𝒑S

𝑠 , . . . ,𝒑
S
0,𝒑

D
0 , . . . ,𝒑

D
𝑡 ) ∈ 𝜕Ω̂ contains

exactly onematerial boundary segment𝒑S
0 𝒑

D
0 such that their cor-

responding ordinary path vertices 𝒙S0 = X(𝒑S
0, 𝜃 ) and 𝒙

D
0 = X(𝒑D

0 , 𝜃 )
lie on the visibility boundary of each other (see Figure 2-a).

In the integrand of the boundary integral, given a boundary path,
the terms 𝑓 B, 𝑓 S, and 𝑓 D capture, respectively, the contributions
of the boundary segment 𝒑S

0 𝒑
D
0 , the source subpath (𝒑

S
𝑠 , . . . ,𝒑

S
0),

and the detector subpath (𝒑D
0 , . . . ,𝒑

D
𝑡 ). Please refer to the work by

Zhang et al. [2020] for exact definitions of these terms as well as
the measure ¤𝜇.

3.2 Multi-Directional Sampling of Boundary Paths
Numerically estimating the boundary integral in Eq. (3) is known
to be challenging. Monte Carlo edge sampling [Li et al. 2018], for
instance, requires detecting object silhouettes at each vertex of
a light path and can be prohibitively expensive for scenes with
complex geometry.

To avoid explicit silhouette detection, Zhang et al. [2020] propose
to sample boundary paths in a multi-directional fashion by (i) sam-
pling the material boundary segment 𝒑S

0 𝒑
D
0 ; and (ii) using standard

methods such as unidirectional and bidirectional path sampling to
construct the source and detector subpaths.

Using this approach, the first boundary-segment sampling step is
unique to path-space differentiable rendering and crucial to the effec-
tiveness of the resulting Monte Carlo estimator. To this end, instead
of directly sampling the two endpoints 𝒑S

0 and 𝒑D
0 (or, equivalently,

the corresponding ordinary vertices 𝒙S0 and 𝒙D0 ), Zhang et al. have
proposed to sample a point 𝒙B ∈ M and a direction 𝝎B ∈ S2

such that 𝒙B lies in the interior of the segment 𝒙S0 𝒙
D
0 and 𝝎B

determines the directions of the segment. In other words, 𝒙S0 =

rayIntersect(𝒙B,−𝝎B) and 𝒙D0 = rayIntersect(𝒙B,𝝎B), as illustrated
in Figure 2-b.
Sampling the boundary segment this way enjoys the benefit of

not requiring explicit silhouette detection (since 𝒙S0 and 𝒙B0 are
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guaranteed to located on the visibility boundary of each other).
On the other hand, efficiently sampling 𝒙B and 𝝎B remains highly
nontrivial. In this paper, we introduce a new technique to tackle
this problem.

4 EFFICIENT SAMPLING OF BOUNDARY SEGMENTS
We now introduce our technique that allows efficient sampling of
boundary segments.

4.1 Primary-Sample-Space Guiding
With the scene geometryM(𝜃 ) expressed using polygonal meshes
(which is the case for many, if not most, applications in computer
graphics and vision), it has been demonstrated that the point 𝒙B
must lie on an edge of some polygonal face—a 1D manifold. Further,
the direction 𝝎B is drawn from a 2D manifold. In other words, the
primary sample space for (𝒙B,𝝎B) is three-dimensional. This allows
us to rewrite the boundary integral in Eq. (3) as a primary-sample-
space integral: ∫

[0,1)3
𝐹 (𝑢1, 𝒖2) d𝒖2 d𝑢1, (4)

where 𝑢1 ∈ R, 𝒖2 ∈ R2, and

𝐹 (𝑢1, 𝒖2) := 𝑓 B (𝒑S
0,𝒑

D
0 ) 𝐽

B (𝑢1, 𝒖2)︸                       ︷︷                       ︸
boundary

ℎS (𝒑S
0,𝒑

D
0 )︸       ︷︷       ︸

source

ℎD (𝒑S
0,𝒑

D
0 )︸        ︷︷        ︸

detector

. (5)

In Eq. (5), 𝐽B is the Jacobian determinant capturing the change of
variable from (𝒙B, 𝝎B) to (𝑢1, 𝒖2), and

ℎS (𝒑S
0,𝒑

D
0 ) :=

∫
𝑓 S (�̄� S;𝒑S

0,𝒑
D
0 ) d𝜇 (�̄�

S), (6)

ℎD (𝒑S
0,𝒑

D
0 ) :=

∫
𝑓 D (�̄� D;𝒑S

0,𝒑
D
0 ) d𝜇 (�̄�

D), (7)

capture, respectively, the contributions of the source subpath �̄� S :=
(𝒑S

1,𝒑
S
2, . . .) and the detector subpath �̄� D := (𝒑D

1 ,𝒑
D
2 , . . .).

We note that, under this formulation, 𝒑S
0 and 𝒑D

0 are essentially
functions of the primary samples 𝑢1 and 𝒖2:

𝒑S
0 = X−1

(
rayIntersect

(
𝒙B (𝑢1), −𝝎B (𝒖2)

)
, 𝜃

)
, (8)

𝒑D
0 = X−1

(
rayIntersect

(
𝒙B (𝑢1), 𝝎B (𝒖2)

)
, 𝜃

)
, (9)

where X−1 (·, 𝜃 ) denotes the inverse of the (predetermined) mapping
from the reference configuration B to the scene geometryM(𝜃 ).
By randomly drawing the primary samples (𝑢1, 𝒖2), the source

subpath �̄� S, and the detector subpath �̄� D, we obtain an unbiased
single-sample Monte Carlo estimator for Eq. (4):〈

𝑓 B (𝒑S
0,𝒑

D
0 ) 𝐽

B (𝑢1, 𝒖2) 𝑓 S (�̄� S;𝒑S
0,𝒑

D
0 ) 𝑓

D (�̄� D;𝒑S
0,𝒑

D
0 )

𝑝 (𝑢1, 𝒖2) 𝑝 (�̄� S) 𝑝 (�̄� D)

〉
, (10)

where 𝑝 (𝑢1, 𝒖2), 𝑝 (�̄� S), 𝑝 (�̄� D) denote the corresponding probabil-
ity densities. In practice, given the boundary segment 𝒑S

0,𝒑
D
0 , the

source and detector subpaths �̄� S and �̄� D can be constructed using
standard unidirectional or bidirectional methods. In what follows,
we focus on sampling the boundary segment itself.

Ideally, we would like to have 𝑝 (𝑢1, 𝒖2) being proportional to
|𝐹 (𝑢1, 𝒖2) |. This, however, is difficult because (i) the ℎS and ℎD com-
ponents are given by path integrals; and (ii) the boundary contribu-
tion 𝑓 B 𝐽B can be highly complex and potentially discontinuous.
To address these challenges, Zhang et al. [2020] propose to ap-

proximate (the absolute value of) Eq. (5) with

𝐹 (𝑢1, 𝒖2) =
���𝑓 B (𝒑S

0,𝒑
D
0 )

��� 𝐽B (𝑢1, 𝒖2) ℎ̃S (𝒑S
0,𝒑

D
0 ) ℎ̃

D (𝒑S
0,𝒑

D
0 ), (11)

where ℎ̃S and ℎ̃D are, respectively, approximations of ℎS and ℎD

obtained using photon mapping. We note that, with the photon (and
importon) maps pre-generated, the evaluations of ℎ̃S and ℎ̃D—which
query those maps—become deterministic.
Further, Zhang et al. [2020] discretize 𝐹 as a piecewise-constant

function using a regular three-dimensional grid with the value of
each cell computed by averaging evaluations of 𝐹 at several random
locations within that cell. With the regular grid computed, it can
then be used to importance sample (𝑢1, 𝒖2). We note that, despite
the use of approximations (i.e., photon mapping and discretization),
the resulting Monte Carlo method generally remains unbiased since
the approximations are used only to construct the PDF 𝑝 (𝑢1, 𝒖2).

Although this method works adequately for simple scenes, more
complex ones (with, for example, detailed geometries and environ-
mental illumination) can lead to rapidly varying 𝐹 that requires grids
with unpractically high resolutions. To address this problem, we
introduce a new technique that utilizes Kd-trees that automatically
adapt to the structure of the function 𝐹 given by Eq. (11).

Kd-tree construction. We use Kd-trees to partition the primary
sample space [0, 1)3 for (𝑢1, 𝒖2). Specifically, we pre-partition the
first dimension into multiple intervals each of which corresponds
to a face edge. This allows that, for each interval [𝑎, 𝑏) ⊂ [0, 1), the
mapping from the primary sample 𝑢1 ∈ [𝑎, 𝑏) to the corresponding
point 𝒙B ∈ M(𝜃 ) is continuous.
Then, for each interval [𝑎, 𝑏), we build a Kd-tree that further

subdivides the primary sample space [𝑎, 𝑏) × [0, 1)2 based on the
function 𝐹 of Eq. (11). As described in Algorithm 1, at each tree
node 𝑟 with axis-aligned bounding box 𝑎𝑎𝑏𝑏 corresponding to the
primary sample space covered by this node, we compute a (tri)linear
fit of the function 𝐹 using samples drawn from 𝑎𝑎𝑏𝑏. If the fitting
error is low (i.e., below some predetermined threshold), the fit is
likely already a close approximation of 𝐹 , and the node no longer
needs to be subdivided. Otherwise, we split the node into two equal-
sized children. For each possible dimension ax ∈ {𝑥,𝑦, 𝑧} of the split,
we compute fits of 𝐹 in the two children (Lines 5–8 of Algorithm 1).
Then, we select the dimension ax∗ with maximal total fitting error,
split the node accordingly, and recursively process the two child
nodes (Lines 9–13 of Algorithm 1).
When building the Kd-trees, we make the number of samples

used for computing (tri)linear fits of 𝐹 a user-specifiable parameter.
Generally, this sampling rate needs to be sufficiently high to capture
the detailed structures of 𝐹 . In practice, since we pre-subdivide the
first dimension of the primary space, we find 32 to work well for all
of our examples.

Sampling. When building the Kd-trees, we also construct a global
list containing references of all the leaf nodes. This allows us to
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ALGORITHM 1: Build Kd-trees to approximate the function 𝐹 in
Eq. (11) in a piecewise linear fashion

1 BuildTree(𝑟 , 𝑎𝑎𝑏𝑏)
Input: Current tree node 𝑟 , the corresponding axis-aligned

bounding box 𝑎𝑎𝑏𝑏, and error threshold 𝜖 ∈ R>0
2 begin
3 Compute first-order fit of 𝐹 within aabb with err being the

fitting error
4 if err > 𝜖 then
5 for ax ∈ {𝑥, 𝑦, 𝑧} do
6 Split the box 𝑎𝑎𝑏𝑏 in half along the axis ax
7 Compute first-order fits of 𝐹 within the two split

regions and let errax be the total fitting error
8 end
9 ax∗ ← arg maxax errax

10 Split 𝑎𝑎𝑏𝑏 along ax∗ into 𝑎𝑎𝑏𝑏1 and 𝑎𝑎𝑏𝑏2
11 Make 𝑟 an internal node with children 𝑟1 and 𝑟2
12 BuildTree (𝑟1, 𝑎𝑎𝑏𝑏1)
13 BuildTree (𝑟2, 𝑎𝑎𝑏𝑏2)
14 else
15 Make 𝑟 a leaf node and add it to a (global) list
16 end
17 end

create a discrete distribution of all nodes such that the probability
mass of each node is proportional to the (trilinear) fit of 𝐹 integrated
over the node’s axis-aligned bounding box.
At render time, to sample a boundary segment, we first select a

tree node using the discrete distribution. Then, we draw the primary
samples (𝑢1, 𝒖2) ∈ R3 using the inversion method based on the fit
of the 𝐹 function associated with that node.

4.2 Multiple Importance Sampling
When estimating the boundary integral in Eq. (3), Zhang et al. [2020]
utilize next-event estimation by further decomposing this integral
into a direct and an indirect term where the former accounts for
boundary paths with the vertex 𝒙S0 = X(𝒑S

0, 𝜃 ) located on a light
source.

To estimate the direct component, after selecting 𝒙B, Zhang et al.
draw the direction 𝝎B ∈ S2 of the boundary segment by sam-
pling the light source. For area lights, this process becomes draw-
ing a point 𝒙S0 on the surface of an area light and letting 𝝎B =

normalize(𝒙B−𝒙S0 ). Although this works well for simple (e.g., small
area) lighting, it can become less effective for complex illumina-
tion conditions (e.g., image-based environmental lighting) since the
sampled direction 𝝎B can usually be invalid due to occlusion (see
Figure 3). In these cases, it is usually more efficient to directly sample
the direction 𝝎B.
To address this problem, we combine multiple importance sam-

pling (MIS) with our primary-sample-space guiding. To this end,
one possibility is to guide a full MIS sampler which uses a primary
sample 𝑢1 ∈ [0, 1) to obtain the location 𝒙B as well as 𝒖light

2 , 𝒖dir
2 ∈

[0, 1)2 to draw, respectively, two direction samples 𝝎B
light and 𝝎B

dir.

x0
S

xB

Fig. 3. When sampling the direction 𝝎B of the boundary segment by first
drawing 𝒙S

0 on a light source and setting 𝝎B = normalized(𝒙S
0 − 𝒙B ) , the

resulting 𝝎B may be invalid: Taking this direction, the boundary segment
would penetrate the object.

Unfortunately, using this MIS sampler leads to a target function
𝐹 (𝑢1, 𝒖

light
2 , 𝒖dir

2 ) over [0, 1)
5, which can be expensive to guide.

Instead, we apply our primary-sample-space guiding (§4.1) to
two processes that draw the direction 𝝎B using light and direction
sampling, respectively. These sampling processes give twomappings
𝝎B

light and 𝝎B
dir from a primary sample 𝒖2 ∈ [0, 1)2 to the direction

𝝎B of the boundary segment, which further yield two versions of
the function 𝐹 from Eq. (11):

𝐹light (𝑢1, 𝒖2) =
���𝑓 B (𝒑S

0,𝒑
D
0 )

��� 𝐽B
light (𝑢1, 𝒖2) ℎ̃S (𝒑S

0,𝒑
D
0 ) ℎ̃

D (𝒑S
0,𝒑

D
0 ),
(12)

𝐹dir (𝑢1, 𝒖2) =
���𝑓 B (𝒑S

0,𝒑
D
0 )

��� 𝐽B
dir (𝑢1, 𝒖2) ℎ̃S (𝒑S

0,𝒑
D
0 ) ℎ̃

D (𝒑S
0,𝒑

D
0 ) .
(13)

We note that, since 𝒑S
0 and 𝒑D

0 are determined by 𝝎B via Eqs. (8)
and (9), they take different values in Eqs. (12) and (13) for the same
primary sample (𝑢1, 𝒖2).

During preprocessing, we apply our primary-sample-space guid-
ing to both 𝐹light and 𝐹dir, obtaining two probability densities 𝑝light
and 𝑝dir that are approximately proportional to 𝐹light and 𝐹dir, re-
spectively. At render time, we draw two sets of primary samples
(𝑢light

1 , 𝒖
light
2 ) and (𝑢dir

1 , 𝒖dir
2 ) with the probability densities 𝑝light

and 𝑝dir, respectively. This gives us two unbiased estimators of the
boundary integral:〈

𝐹light (𝑢
light
1 , 𝒖

light
2 )

𝑝light (𝑢
light
1 , 𝒖

light
2 )

〉
,

〈
𝐹dir (𝑢dir

1 , 𝒖dir
2 )

𝑝dir (𝑢dir
1 , 𝒖dir

2 )

〉
. (14)

To obtain proper weights for these estimators, we rewrite the proba-
bility densities 𝑝light and 𝑝dir with respect to 𝒙B and 𝝎B (as opposed
to 𝑢1 and 𝒖2) by letting

𝑝light (𝑢1, 𝒖2) :=
𝑝light (𝑢1, 𝒖2)
𝐽B
light (𝑢1, 𝒖2)

, 𝑝dir (𝑢1, 𝒖2) :=
𝑝dir (𝑢1, 𝒖2)
𝐽B
dir (𝑢1, 𝒖2)

. (15)

Using the balance heuristic, this allows us to weight contributions
of the two estimators in Eq. (14) with

𝑝light (𝒖light)
𝑝light (𝒖light) + 𝑝dir (𝒖light)

,
𝑝dir (𝒖dir)

𝑝light (𝒖dir) + 𝑝dir (𝒖dir)
, (16)

respectively, where 𝒖light := (𝑢light
1 , 𝒖

light
2 ) and 𝒖dir := (𝑢dir

1 , 𝒖dir
2 ).
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v
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v
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cur

(a) (b)

Fig. 4. Edge sorting: (a) Sorting the edges of a mesh allows us to create
long “chains” (marked in red), improving the continuity of 𝒙B (𝑢1 ) . (b) When
extending a chain ending at the vertices 𝒗prev and 𝒗cur, we pick the neighbor
𝒗next such that the direction of (𝒗cur, 𝒗next ) is as close as possible to that of
(𝒗prev, 𝒗cur ) .

In practice, evaluating the probability densities 𝑝light and 𝑝dir
in Eq. (15) requires traversing the corresponding Kd-trees. To ac-
celerate the computation, we exploit the fact that 𝑝light and 𝑝dir
are approximately proportional to 𝐹light and 𝐹dir, respectively. This
allow us to write

𝑝light (𝑢1, 𝒖2) ≈
𝐹light (𝑢1, 𝒖2)

𝑐light 𝐽
B
light (𝑢1, 𝒖2)

, 𝑝dir (𝑢1, 𝒖2) ≈
𝐹dir (𝑢1, 𝒖2)

𝑐dir 𝐽
B
dir (𝑢1, 𝒖2)

,

(17)
where 𝑐light and 𝑐dir are normalization constants obtained when
building the Kd-trees (by summing the probability masses stored
in all leaf nodes). We note that, in Eq. (17), 𝐹light and 𝐹dir can be
calculated, respectively, via Eqs. (12) and (13) in 𝑂 (1) time.

4.3 Edge Sorting
When the target functions 𝐹 of Eq. (11), 𝐹light of Eqs. (12), and
𝐹dir of Eqs. (13) are highly discontinuous, the performance of our
technique can degrade as the Kd-trees need to have very large depths
to properly approximate the targets. In practice, this is mostly caused
by discontinuities of 𝒙B as a function of the primary sample 𝑢1.
To address this problem, we introduce an optional step that can

greatly reduce the number of jump discontinuity points of 𝒙B (𝑢1).
Specifically, we sort the edges to form long “chains” along which the

ALGORITHM 2: Construct a chain of mesh edges

1 BuildChain(M, 𝒗0)
Input: A polygonal meshM and a mesh edge (𝒗0, 𝒗1 )

2 begin
3 chain← [(𝒗0, 𝒗1 ) ] ; // The resulting chain

4 𝒗prev ← 𝒗0; 𝒗cur ← 𝒗1;
5 while 𝒗cur is associated with some unused edge do
6 Select an unused edge (𝒗cur, 𝒗next ) with a direction as close

to that of (𝒗prev, 𝒗cur ) as possible;
7 Append the edge (𝒗cur, 𝒗next ) to the end of chain;
8 𝒗prev ← 𝒗cur; 𝒗cur ← 𝒗next;
9 end

10 return chain;
11 end

𝑢1 = 0 𝑢1 = 1

(a) Scene configuration (b1) No sorting (c1) With sorting

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0
2.2
3.4
4.6
5.81e−3

(b2) Marginalized target function 𝐹dir (𝑢1 ) without edge sorting

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0
2.2
3.4
4.6
5.81e−3

(c2) Marginalized target function 𝐹dir (𝑢1 ) with edge sorting

Fig. 5. We demonstrate the effectiveness of our edge sorting using a
simple scene containing a glossy egg under environmental illumination (a).
Without edge sorting, the mapping from the primary sample𝑢1 to points on
mesh edges can be highly discontinuous (b1), causing the target functions
to have many jump discontinuities (b2). With edge sorting, on the other
hand, the mapping becomes significantly more continuous (c1), causing the
target functions to contain fewer discontinuities (c2).

mapping from 𝑢1 to 𝒙B is continuous (see Figure 4-a). Since finding
the optimal edge ordering that results in a minimal number of chains
is NP-hard, we instead traverse the mesh edges in a greedy fashion.
As described in Algorithm 2, starting from an arbitrary mesh edge,
we construct a chain of edges by iteratively moving to a neighboring
vertex 𝒗next from the current one 𝒗cur. When there are multiple
possible neighbors, we pick the one such that the direction of the
edge (𝒗cur, 𝒗next) is as close to that of the previous one (𝒗prev, 𝒗cur)
as possible (see Figure 4-b). We demonstrate the usefulness of our
edge sorting process using a simple scene in Figure 5 and will show
more ablations in §5.
For applications where remeshing can be applied (which is typi-

cally the case when solving inverse-rendering problems), we pre-
apply remeshing [Jakob et al. 2015] to make the input mesh field-
aligned. This allows our edge sorting process to output fewer longer
chains, further improving the overall effectiveness of our technique.

5 RESULTS
In what follows, we validate our technique and evaluate its effective-
ness by comparing gradient images (§5.1). Then, we compare the
performance of our technique and baseline methods using several
inverse-rendering examples (§5.2) and show additional results (§5.3).
Please refer to the supplemental material for more examples and

animated inverse-rendering results.
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(a) Ordinary (b1) PSDR (reference) (b2) PSDR (equal-time) (c) Ours
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Fig. 6. Differentiable-rendering comparisons:We compare boundary-component-only gradient images generated with our technique (c) with Zhang et al.’s
method [2020] indicated as “PSDR” (b1, b2). At equal-time, our technique produces significantly cleaner gradient estimates (b2, c).

5.1 Validation and Evaluation
Validation and comparison with Zhang et al. We evaluate our tech-

nique by comparing gradient images generated with our method
and with Zhang et al.’s approach [2020] which performs simple guid-
ing using regular grids. Since our technique focuses on estimating
the boundary component of Eq. (3), we estimate this term only (i.e.,
by neglecting the interior integral) for both methods.

We show three examples in Figure 6. The bunny scene contains
a glossy bunny under environmental illumination, and the gradient
images are computed with respect to the rotation angle of the bunny
(around the vertical axis). The bunny shadow 1 scene involves a
bunny lit by a large area light, casting a soft shadow on the ground.
The gradients are computed with respect to the translation of the
bunny. The Cornell box 1 scene has a rough-glass object and an
area light pointing toward the ceiling, causing most of the scene to
be indirectly lit. In all examples, our results closely match the refer-
ences (obtained using Zhang et al.’s method [2020] with very high
sample counts). At equal-time—and approximately equal sample
and storage—our results enjoy much lower variances.

Comparison with warped-area sampling. Additionally, in Figure 7
and the supplement, we compare gradients estimated using our
method and warped-area sampling [Bangaru et al. 2020]. This tech-
nique is largely orthogonal to ours as it handles visibility discon-
tinuities very differently (by turning the boundary integral into

an interior one using the divergence theorem). Nonetheless, we
compare with this technique for completeness. Since warped-area
sampling uses a different formulation than ours, we show full gradi-
ent estimates—as opposed to boundary-component-only estimates—
where our results have the interior components computed using
Zhang et al.’s method [2020].
In Figure 7, the bunny shadow 1 scene is identical to the one

used in Figure 6, and the Cornell box 2 scene is a simplified version
of Cornell box 1 with a diffuse object2 and the area light pointing
downward. When using equal numbers of samples, our technique is
significantly faster while producing gradient estimates with lower
noise. At equal time, our method offers even greater advantage in
result quality.

Ablation: differentiable rendering. Lastly, we conduct an ablation
study using the bunny scene to evaluate the effectiveness of our
edge sorting and remeshing (§4.3) as well as multiple important
sampling (§4.2). This scene uses outdoor environmental lighting
with a bright sun, creating a clear shadow on the ground (as shown
in the top row of Figure 6-a).
When performing light sampling, the area containing the sun

will be selected with a very high probability. This strategy works
well for boundary segments with 𝒙B located on regions that are
2We use a diffuse object in the Cornell box 2 scene because the implementation of
warped-area sampling [Bangaru et al. 2020] released by the authors does not support
the rough dielectric BSDF.
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(a) Ordinary (b) Reference (c1)WAS (equal-sample) (c2) WAS (equal-time) (d) Ours
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Fig. 7. Differentiable-rendering comparisons: We compare gradient images generated with our technique and the warped-area sampling (WAS)
method [Bangaru et al. 2020]. With equal sample counts, our technique produces cleaner results while being significantly faster. At equal-time, the quality
differences become even greater.

visible to the sun and produces clean gradient estimates around
the shadow boundaries. On the other hand, for boundary segments
with 𝒙B occluded from the sun, light sampling is a poor strategy—as
illustrated in Figure 8—and causes high variance around the bunny.
Even with Zhang et al.’s (Figure 8-b) and our primary-sample-space
guiding (Figure 8-c1), the results remain noisy as the support of the
target function 𝐹light of Eq. (12) is very narrow, making it difficult
to detect the high-value regions of 𝐹light.
When using direction sampling with our guiding, the result is

much cleaner overall since the sampled directions of boundary
segments are no longer affected by the position of the sun (Figure 8-
c2). On the other hand, estimated gradients around the shadow
boundaries become slightly worse.
Our multiple importance sampling technique (§4.2) combines

light- and direction-sampling strategies and, thus, enjoys the advan-
tages of both (Figure 8-d).

With edge sorting (§4.3), Zhang et al.’s method—which does not
adapt to the structure of the target function—has hardly any im-
provement in result quality. In contrast, our method benefits from
improved continuity of the target functions and produces cleaner
results, as shown in the bottom row of Figure 8.

5.2 Inverse-Rendering Comparisons
We now demonstrate the effectiveness of our technique using sev-
eral inverse-rendering examples using synthetic input images. Since
our technique focuses on estimating the boundary integral, we
use Zhang et al.’s method [2020] to estimate the interior term of
Eq. (3). For all inverse-rendering optimizations, we use Nicolet et al.’s
method [2021] to update mesh vertex positions (provided the esti-
mated gradients). Additionally, we utilize mini-batch gradient de-
scent by only rendering a subset of input images per iteration. Please

refer to Table 2 for optimization configurations and performance
statistics.

Ablation: inverse rendering. As a continuation of the ablation
study (Figure 8), we show two inverse-rendering comparisons in
Figure 9. Both the jumpy dumpty (top) and the Klee (bottom)
scenes are comprised of glossy objects under environmental illu-
minations with cast shadows on the ground. Using multiple target
images under identical illumination but varying viewing directions
(with one shown in the figure), we solve for the object shapes by
minimizing image 𝐿1 losses. Initialized with a sphere (Figure 9-a)
and using identical settings (e.g., learning rates and numbers of iter-
ations), we configure three optimizations with gradients estimated
using our primary-sample-space guiding with light sampling, direc-
tion sampling, and multiple importance sampling (MIS), respectively
(Figure 9-cd). Further, we ran these optimizations with and without
our edge sorting method, respectively. The results demonstrate that,
both our MIS and edge sampling processes yield reduced variance
in gradient estimates, allowing the optimization to converge faster
and produce more accurate reconstructions.
Further, we compare the performance of inverse-rendering op-

timization using gradients estimated with our (full) technique and
with Zhang et al.’s method [2020]. Figure 10 shows three examples.
The kirby scene contains a rough-glass object under area illumina-
tion; The bunny in glass scene consists of a diffuse bunny enclosed
by a cube made of rough glass. Taking as input 35 images for the first
scene and 50 for the second, we solve for the shapes of these objects
to minimize image 𝐿1 losses. Since our technique has identical inte-
rior estimates and offers lower variance boundary integral estimates,
gradients obtained with our method result in faster convergence.

Additionally, the bunny shadow 2 scene contains a bunny (out-
side the camera’s field of view) under environmental illumination,
casting a shadow on the ground. Taking as input 70 shadow images
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(a) GT (b) [Zhang et al. 2020] (c1) Ours (light sampling) (c2) Ours (dir. sampling) (d) Ours (MIS)
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Fig. 8. Ablation study (differentiable rendering): We evaluate the effectiveness of our edge-sorting (§4.3) and multiple-importance-sampling (§4.2) steps.
All results in columns (b–d) are generated in equal time.

Table 2. Optimization configuration and performance statistics for our inverse-rendering results. The “guiding time” numbers indicate per-iteration
computation time for building the Kd-trees; the “render time” numbers account for the differentiable rendering time; and “postproc. time” captures the cost
for updating mesh vertices (using Nicolet et al.’s method [2021]). All experiments are conducted on a workstation with an AMD Ryzen Threadripper Pro
3975WX CPU (with 32 cores) and an Nvidia RTX Titan graphics card.

Scene # Target # Param. Batch # Iter. Guiding Guiding Render Postproc.
images size memory time time time

Dodoco (Fig. 1) 70 450,000 2 3000 4 MB 1.34 s 2.59 s 0.310 s
Jumpy Dumpty (Fig. 9) 140 60,000 2 520 2 MB 0.61 s 1.11 s 0.016 s

Klee (Fig. 9) 40 60,000 1 200 2 MB 0.33 s 0.82 s 0.016 s
Kirby (Fig. 10) 35 15,000 1 400 80 KB 0.91 s 3.67 s 0.017 s

Bunny in glass (Fig. 10) 50 30,000 2 2000 128 KB 1.79 s 17.55 s 0.022 s
Bunny shadow 2 (Fig. 10) 70 30,000 2 600 2 MB 0.47 s 0.72 s 0.012 s

Duck (Fig. 11) 35 3,205,728 1 400 2 MB 0.34 s 0.94 s 0.092 s
Mora (Fig. 11) 70 150,001 1 1600 4 MB 0.43 s 1.01 s 0.109 s

Glass Dodoco (Fig. 11) 140 60,000 1 700 400 KB 0.94 s 5.76 s 0.093 s

with the object having varying known orientations, we solve for the
shape of the object. Since the gradients around shadow boundaries
are captured solely by the boundary integral, the quality of its esti-
mates is crucial to the performance. Compared with Zhang et al.’s
method, our gradient estimates have significantly lower noise, yield-
ing much better reconstruction of object geometry. We note that
the object’s geometric details are difficult to recover due to the
non-line-of-sight configuration.

5.3 Additional Inverse-Rendering Results
We show additional inverse-rendering results in Figure 11. The
Duck scene [Dong et al. 2014] contains a textured duck model
under environmental illumination. Using 35 target images of the
object with different viewing directions, we jointly optimize the
shape of the object and its spatially varying albedo. TheMora scene

involves a glossy coin under environmental lighting. Using 70 target
images of the object under multiple views, we jointly optimize the
shape of the object and the global rotation angle of the environment
map (around the vertical axis). The glass Dodoco scene consists
of a rough-glass object under area lighting. Taking as input 140
multi-view images, we optimize the shape of the object.

The boundary component of Eq. (3) plays a significant role in all
these examples. Our technique successfully provides low-variance
gradient estimates, allowing all the inverse-rendering optimizations
to converge smoothly. Please refer to the supplement for animated
versions of these results.
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(a1) Initial (b1) Target (a2) Initial (b2) Target

(c1) Ours (no edge sorting) (d1) Ours (with edge sorting)
MIS Light sampling Dir. sampling MIS Light sampling Dir. sampling

2.04 × 10−2 9.44 × 10−2 1.10 × 10−1 3.50 × 10−4 7.58 × 10−2 1.10 × 10−2

(c2) Ours (no edge sorting) (d2) Ours (with edge sorting)
MIS Light sampling Dir. sampling MIS Light sampling Dir. sampling

1.26 × 10−2 6.77 × 10−2 4.01 × 10−1 9.05 × 10−3 6.79 × 10−2 1.83 × 10−2

Fig. 9. Ablation study (inverse rendering): We evaluate the effectiveness of our edge sorting and multiple-importance-sampling (MIS) processes by
comparing inverse-rendering results. On the bottom of (a3), (a4), (b3) and (b4), we visualize the reconstructed models and show the corresponding Chamfer
distances [Barrow et al. 1977] to the groundtruth geometries (normalized so that the GT has a unit bounding box). Using identical target images (one of which
is shown for each example), losses, initializations, and optimization configurations (including learning rates and numbers of iterations), our edge sorting and
multiple importance sampling can both lead to more accurate reconstructions.

6 DISCUSSION AND CONCLUSION
Limitations and future work. Our technique focuses on the surface-

only light transport. For scenes with participating media, as demon-
strated by Zhang et al. [2021b], the dimensionality of the primary-
sample space for constructing boundary segments increases from

three to five, making the guiding much more challenging. Gener-
alizing our technique to support volumetric light transport is an
important future topic.
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Fig. 10. Inverse-rendering comparison: We solve inverse-rendering problems using gradients estimated using our technique and PSDR [Zhang et al. 2020].
For each example, we use identical target images (with one shown), losses, and optimization settings (e.g., initial states, optimizers, and learning rates). At
equal-time, our technique has allowed significantly faster convergence for all examples. The plotted mesh error captures the Chamfer distance [Barrow
et al. 1977] between the reconstructed and groundtruth geometries (normalized so that the GT has a unit bounding box). We use this information only for
evaluation, and not for optimization.
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Fig. 11. Additional inverse-rendering results generated with gradient estimates obtained using our method. The mesh error [Jensen et al. 2014] is used for
evaluation only, and not for optimization.
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Additionally, our technique focuses on constructing boundary
segments, so improving the sampling of source and detector sub-
paths may further benefit the performance of our technique.
Lastly, combining our method with Markov-Chain Monte Carlo

(MCMC) sampling may be an interesting topic for future exploration.

Conclusion. We introduced a new technique to effectively esti-
mate boundary path integrals. A core component of our technique
is a primary-sample-space guiding algorithm that adapts to the
structures of the integrand of boundary path integrals and allows ef-
ficient importance sampling of boundary segments. We also showed
how multiple importance sampling can be applied to combine two
guiding strategies. Additionally, we introduced an optional edge
sorting step to further improve the performance of our technique.
We evaluated the effectiveness of our technique by comparing

with existing methods using several differentiable-rendering and
inverse-rendering experiments.
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