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Fig. 1. We introduce a technique that estimates and differentiates the variance of Monte Carlo rendering processes. This example features an animated
scene with a whale swimming underwater, lit by one environmental and two area lights. Based on our technique, we jointly optimize the roughness of the
water surface as well as the sampling probability of the three light sources (using one frame of the animation). When rendered using a unidirectional path
tracer with 16384 samples per pixel, the optimized configuration produces significantly better results. Converged renderings for Frame 180 demonstrate the
roughening of the water surface produced by our optimization. Please refer to the supplement to view the full animations.

Monte Carlo methods have been widely adopted in physics-based rendering.
A key property of a Monte Carlo estimator is its variance, which dictates the
convergence rate of the estimator. In this paper, we devise a mathematical
formulation for derivatives of rendering variance with respect to not only
scene parameters (e.g., surface roughness) but also sampling probabilities.
Based on this formulation, we introduce unbiasedMonte Carlo estimators for
those derivatives. Our theory and algorithm enable variance-aware inverse
rendering which alters a virtual scene and/or an estimator in an optimal
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way to offer a good balance between bias and variance. We evaluate our
technique using several synthetic examples.
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1 Introduction
Physically-based forward rendering focuses on numerically comput-
ing radiometric measurements in fully described virtual scenes. To
this end, Monte Carlo methods (e.g., path tracing), which work by
averaging contributions of randomly traced light paths have long
been a “gold standard”, thanks to their capabilities of accurately
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simulating complex light transport effects (e.g., soft shadow and
interreflection).
Differentiable rendering, on the other hand, concerns with esti-

mating derivatives of forward-rendering results. Recently, great
progress has been made in differentiable rendering [Li et al. 2018;
Zhang et al. 2020; Bangaru et al. 2020], resulting in efficient and
general-purpose differentiable rendering techniques capable of dif-
ferentiating with respect to a wide range of scene parameters in-
cluding material properties and object geometries.
A key property of any Monte Carlo forward or differentiable

rendering technique is its variance—which largely determines the
number of random samples needed for producing clean results.
Consequently, variance reduction has been a central research topic
for both forward and differentiable rendering [Zhang et al. 2021;
Vicini et al. 2021; Zhang et al. 2023].

Due to the importance of variance, several methods [Durand
2011; Subr and Kautz 2013; Pilleboue et al. 2015]—most of which
leverage Monte Carlo techniques themselves—have been introduced
to estimate the variance of Monte Carlo rendering processes. On
the other hand, estimating the derivatives of rendering variance
has been largely under-explored—As we will demonstrate, naïvely
applying automatic differentiation (AD) to (forward) variance esti-
mation procedures generally yields incorrect results, also known as
bias in derivatives.

In this paper, we bridge this gap by establishing a new differential
formulation for rendering variance. An important application of
our technique is variance-aware inverse rendering, which enables
the altering of virtual scenes and/or Monte Carlo estimators to offer
a good balance between rendering variance and rendering bias.
Concretely, our contributions include:

• Devising a novel mathematical formulation for derivatives of
rendering variances with respect to both scene parameters and
sampling probabilities (§4);

• Discussing the estimation and differentiation of variance-aware
losses and introducing the concept of variance-aware inverse
rendering (§5).

We validate our technique by comparing our variance derivative
estimates to references obtained using finite differences. Further, we
demonstrate the usefulness of our technique using several synthetic
inverse-rendering examples.

2 Related Works
Differentiable rendering. Recently, great progresses have been

made in physics-based differentiable rendering. We discuss most
relevant techniques in the following and refer the readers to online
course materials (e.g., [Zhao et al. 2020]) for a more comprehensive
overview.
A main challenge toward the development of general-purpose

differentiable rendering techniques has been the differentiation with
respect to scene geometry—which generally requires calculating
additional boundary integrals.
To address this problem, two classes of techniques have been

introduced. The first class directly samples discontinuity bound-
aries [Li et al. 2018; Zhang et al. 2020]. Specifically, Zhang et al.
[2020] have introduced the formulation of differential path integrals

where discontinuities are tracked and handled at the path level. Re-
cently, specialized methods [Yan et al. 2022; Zhang et al. 2023] have
been developed to better importance sample these path integrals.
The second class of methods [Loubet et al. 2019; Bangaru et al. 2020;
Xu et al. 2023] reparameterize boundary integrals and avoid explicit
handling of discontinuity boundaries altogether.
Unfortunately, most, if not all, existing differentiable rendering

techniques focus on derivatives of (converged) rendering estimates
(e.g., pixel values) rather than their variances. In this paper, we
bridge this gap by adopting the formulation by Zhang et al. [2020]
to establish a general mathematical framework for the derivatives
of rendering variances.

Variance-aware forward rendering. Variance reduction has been
a long-standing topic in Monte Carlo forward rendering. Among
the very large body of works on this topic, several recent methods
leverage variance information to enhance various aspects including
multiple importance sampling [Grittmann et al. 2019] and path
guiding [Rath et al. 2020]. Our technique is largely orthogonal to
these methods.

Path-space regularization. As a potential application of our theory,
path-space regularization concerns with modifying path sampling
strategies so that rendering variance is greatly reduced while in-
troducing minimal bias. Previously, several techniques [Kaplanyan
and Dachsbacher 2013; Jendersie and Grosch 2019] have been in-
troduced to regularize the sampling of micro-facet distributions by
leveraging strategic use of mollifiers for Dirac deltas.

The path-space regularization technique that is most relevant to
ours is the one by Weier et al. [2021]—which reduces rendering vari-
ance by altering surface roughness at selected vertices of each light
path. This technique formulates the search of optimal roughness
values as a variance-aware inverse rendering problem and lever-
ages differentiable rendering to solve the optimization efficiently.
Unfortunately, they rely on highly biased variance estimates which,
as we will show in §4 and §6, can lead to unreliable optimization.

3 Preliminaries
We now revisit some preliminaries in Monte Carlo rendering (§3.1)
and the estimation of rendering variance (§3.2).

3.1 Path Integrals
In physics-based (forward) rendering, the response of a radiometric
detector is typically formulated as a path integral [Veach 1997] of
the form:

𝐼 =

∫
𝛀

𝑓 (�̄�) d𝜇 (�̄�), (1)

where:

• �̄� = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) is a light path where 𝒙0 and 𝒙𝑁 reside on
a light source and the detector, respectively;

• 𝛀 is the path space comprised of all finite-length light paths;

• 𝜇 is the area-product measure.
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Additionally, 𝑓 is the measurement contribution function de-
fined as

𝑓 (�̄�) = 𝐿e (𝒙0 �𝒙1)
(
𝑁−1∏
𝑛=0

𝐺 (𝒙𝑛 ↔ 𝒙𝑛+1)
)

(
𝑁−1∏
𝑛=1

𝑓s (𝒙𝑛−1 �𝒙𝑛�𝒙𝑛+1)
)
𝑊e (𝒙𝑁−1 �𝒙𝑁 ), (2)

where: 𝐿e and𝑊e denote the source emission and detector re-
sponse functions, respectively; 𝐺 is the geometric term; 𝑓s indi-
cates the bidirectional scattering distribution function (BSDF).

Based on the path-integral formulation (1), the detector response
can be estimated using Monte Carlo estimation in an unbiased
fashion via

⟨𝐼 ⟩ :=
𝑓 (�̄�)
𝑞(�̄�) , (3)

where �̄� is light path randomly drawn with the probability density
𝑞 (such that 𝑞(�̄�) > 0 for all �̄� with 𝑓 (�̄�) ≠ 0).

3.2 Estimating Rendering Variance
The varianceV[⟨𝐼 ⟩] of the estimator ⟨𝐼 ⟩ fromEq. (3) satisfies that [Pe-
goraro 2016, §4.4.6]

V[⟨𝐼 ⟩] = E
[
⟨𝐼 ⟩2] − E2 [⟨𝐼 ⟩] = E

[
⟨𝐼 ⟩2] − 𝐼2, (4)

where the second moment E[⟨𝐼 ⟩2] is given by

E
[
⟨𝐼 ⟩2] = ∫

𝛀

(
𝑓 (�̄�)
𝑞(�̄�)

)2
𝑞(�̄�) d𝜇 (�̄�) =

∫
𝛀

ℎ(�̄�) d𝜇 (�̄�), (5)

with 𝑓 being the measurement contribution defined in Eq. (2) and

ℎ(�̄�) :=
𝑓 2 (�̄�)
𝑞(�̄�) . (6)

Given Eq. (5), the second moment E[⟨𝐼 ⟩2] can be estimated using〈
E

[
⟨𝐼 ⟩2]〉 = ℎ(�̄�)

𝑞(�̄�) =
𝑓 2 (�̄�)
𝑞2 (�̄�)

, (7)

where �̄� is a path randomly drawn with the probability density 𝑞.
Further, when the first moment E[⟨𝐼 ⟩] = 𝐼 is known, the vari-
ance V[⟨𝐼 ⟩] can be estimated using

⟨V[⟨𝐼 ⟩]⟩ =
〈
E

[
⟨𝐼 ⟩2]〉 − 𝐼2 =

𝑓 2 (�̄�)
𝑞2 (�̄�)

− 𝐼2 . (8)

On the other hand, when 𝐼 itself needs to be estimated using Eq. (3),
we will need two independent path samples �̄�1, �̄�2 to obtain an
unbiased estimate of 𝐼2. When reusing these samples for the second
moment E[⟨𝐼 ⟩2], we obtain the following Monte Carlo estimator:

⟨V[⟨𝐼 ⟩]⟩ = 1
2

(
𝑓 2 (�̄�1)
𝑞2 (�̄�1)

+ 𝑓 2 (�̄�2)
𝑞2 (�̄�2)

)
− 𝑓 (�̄�1)
𝑞(�̄�1)

𝑓 (�̄�2)
𝑞(�̄�2)

. (9)

4 Differentiating Rendering Variance
Let ⟨𝐼 ⟩ be a Monte Carlo estimator defined in Eq. (3) and 𝜃 ∈ R be a
parameter1 controlling the scene (that is being rendered by ⟨𝐼 ⟩) or
the path sampling process. We consider the problem of differentiat-
ing the rendering variance V[⟨𝐼 ⟩] defined in Eq. (4) with respect to
1We assume the parameter 𝜃 to be scalar-valued for notational simplicity. All results
derived in this paper generalize naturally to vector-valued parameters.

𝜃 , which largely amounts to deriving the derivatives of 𝐼 and the
second moment E[⟨𝐼 ⟩2]:

𝜕𝜃 V [⟨𝐼 ⟩] = −2𝐼 (𝜕𝜃 𝐼 ) +
(
𝜕𝜃 E

[
⟨𝐼 ⟩2] ) . (10)

Smoothness assumptions. To facilitate the derivation of the deriva-
tives 𝜕𝜃 𝐼 and 𝜕𝜃 E[⟨𝐼 ⟩2], we assume the source emission 𝐿e (𝒙0 �𝒙1),
detector response𝑊e (𝒙𝑁−1 �𝒙𝑁 ), and BSDF 𝑓s (𝒙𝑛−1 �𝒙𝑛�𝒙𝑛+1)
to all be 𝐶0 with respect to the path vertices 𝒙0, 𝒙1, . . . , 𝒙𝑁 . This
assumption has been made by most, if not all, state-of-the-art dif-
ferentiable rendering techniques (e.g., [Zhang et al. 2020; Bangaru
et al. 2020; Vicini et al. 2021, 2022]).

In addition, we assume that the probability density 𝑞 is𝐶0 except
across visibility boundaries. This is a mild assumption that usually
holds in practice, and we will further discuss in §4.2.

4.1 Our Derivation
We now derive Eq. (10) when the parameter 𝜃 ∈ R controls the scene
(e.g., the roughness of a surface or the size of an area light) and/or the
sampling process (e.g., the probability mass for sampling a specific
light source). In general,𝜃 can affect themeasurement contribution 𝑓
and the path space 𝛀 in Eq. (1), as well as the probability 𝑞 in Eq. (3).

Material-form reparameterization. When the path space 𝛀 de-
pends on 𝜃 , differentiating path integrals over this space with respect
to 𝜃 becomes more challenging since discontinuities of the mea-
surement contribution can evolve with 𝜃 . To address this problem,
Zhang et al. [2020] have proposed to reparameterize the evolving
path space𝛀(𝜃 ) with a fixed reference path space �̂� using a prede-
termined one-to-one mapping X̄(𝜃 ) : �̂� ↦→ 𝛀(𝜃 ) which transforms
each material path �̄� ∈ �̂� into a spatial path �̄� = X̄(�̄�, 𝜃 ) ∈ 𝛀(𝜃 ).
To this end, given a material path �̄� = (𝒑0, . . . ,𝒑𝑁 ), its spatial

representation �̄� = X̄(�̄�, 𝜃 ) = (𝒙0, . . . , 𝒙𝑁 ) is obtained by trans-
forming each path vertex using 𝒙𝑛 = X(𝒑𝑛, 𝜃 ), where X(·, 𝜃 ) is a
one-to-one mapping from some reference surface (which defines the
fixed reference space �̂�) to the evolving surface of the scene (which
defines the path space 𝛀(𝜃 )).

In practice, when evaluating derivatives at 𝜃 = 𝜃0 (for some fixed
𝜃0), the reference surface is normally chosen as the evolving surface
at 𝜃 = 𝜃0. This causes the reference path space �̂� to coincide with
evolving one 𝛀 at 𝜃 = 𝜃0: That is, �̂� = 𝛀(𝜃0). For more details,
please refer to the work by Zhang et al. [2020].

Differentiating 𝐼 . The derivative 𝜕𝜃 𝐼 can be obtained using the
differential path integral formulation [Zhang et al. 2020]—which we
briefly revisit in the following for completeness.

Applying the material-form reparameterization to the path inte-
gral in Eq. (1) produces2

𝐼 =

∫
�̂�

𝑓 (X̄(�̄�, 𝜃 )) 𝐽X̄ (�̄�)︸               ︷︷               ︸
=: 𝑓 (�̄�)

d𝜇 (�̄�), (11)

where 𝐽X̄ is the Jacobian term emerging from the change of variable
�̄� = X̄(�̄�, 𝜃 ).

2We omit the dependencies of 𝐽X̄ , 𝑓 , and ℎ̂ on the parameter 𝜃 for notational simplicity.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.



4 • Yan, Pegoraro, Droske, Vorba, and Zhao

Detector subpath
Source subpath

Boundary seg.
Detector subpath
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(a) Ordinary path (b) Boundary path

Fig. 2. Ordinary and boundary paths.

The derivative of Eq. (11) with respect to 𝜃 can be expressed as
differential path integrals:

𝜕𝜃 𝐼 =

∫
�̂�

𝜕𝜃 𝑓 (�̄�) d𝜇 (�̄�)︸                 ︷︷                 ︸
interior

+
∫
𝜕�̂�

𝑓 (�̄�)𝑉 (�̄�) d ¤𝜇 (�̄�)︸                      ︷︷                      ︸
boundary

, (12)

where the interior integral is defined over the same referenced path
space �̂� as Eq. (11).
The boundary integral in Eq. (12) is defined over the boundary

path space 𝜕�̂� comprised of material boundary paths each con-
taining exact one boundary segment (see Figure 2). For a bound-
ary path �̄� with the boundary segment 𝒑𝐾−1 𝒑𝐾 , the vertex 𝒑𝐾 is
constrained over discontinuity boundaries3 of the mutual visibil-
ity V(X(𝒑𝐾−1, 𝜃 ) ↔ X(𝒑𝐾 , 𝜃 )) with 𝒑𝐾−1 fixed, and𝑉 (�̄�) captures
the “normal velocity” of these boundary curves at 𝒑𝐾 (with respect
to 𝜃 ). Please refer to prior works [Zhang et al. 2020, 2023] for the
exact forms of 𝑉 (�̄�).

Differentiating E[⟨𝐼 ⟩2]. We now discuss how Zhang et al.’s [2020]
differential path integral formulation can be adopted for the second
moment E[⟨𝐼 ⟩2].
Leveraging the material-form reparameterization, we rewrite
E[⟨𝐼 ⟩2] in Eq. (5) as a material-form path integral:

E
[
⟨𝐼 ⟩2] = ∫

�̂�

ℎ
(
X̄(�̄�, 𝜃 )

)
𝐽X̄ (�̄�)︸               ︷︷               ︸

=: ℎ̂ (�̄�)

d𝜇 (�̄�), (13)

which is identical to the forward rendering variant (11) except with
the measurement contribution 𝑓 replaced with ℎ defined in Eq. (6).
Based on the assumption that the probability density 𝑞 is 𝐶0 ex-

cept across visibility boundaries, we make an important observation
that the function ℎ shares the same 𝜃 -dependent discontinuities as
𝑓—which we will elaborate in §4.2. This allows us to use another
form of differential path integrals to express the derivative of Eq. (13)
with respect to 𝜃 :

𝜕𝜃 E
[
⟨𝐼 ⟩2] = ∫

�̂�

𝜕𝜃 ℎ̂(�̄�) d𝜇 (�̄�)︸                ︷︷                ︸
interior

+
∫
𝜕�̂�

ℎ̂(�̄�)𝑉 (�̄�) d ¤𝜇 (�̄�)︸                      ︷︷                      ︸
boundary

, (14)

3We assume without loss of generality that all visibility boundaries have normals
pointing toward the occluded sides. When using normals toward the visible sides, the
integrands of the boundary components in Eqs. (12) and (14) become −𝑓 (�̄�)𝑉 (�̄�) and
−ℎ̂ (�̄�)𝑉 (�̄�) , respectively.

which is identical to Eq. (12) except with 𝑓 replaced by ℎ̂ for both
the interior and the boundary components.

Monte Carlo estimation. With the derivatives in Eqs. (12) and (14)
derived, the derivative in Eq. (10) at some 𝜃 = 𝜃0 can be estimated
via:

⟨𝜕𝜃 V [⟨𝐼 ⟩]⟩ = −2
𝑓 (�̄�1)
𝑞1 (�̄�1)

(
𝜕𝜃 𝑓 (�̄�2)
𝑞2 (�̄�2)

+
𝑓 (�̄�3)𝑉 (�̄�3)
𝑞3 (�̄�3)

)
+

(
𝜕𝜃 ℎ̂(�̄�2)
𝑞2 (�̄�2)

+
ℎ̂(�̄�4)𝑉 (�̄�4)
𝑞4 (�̄�4)

)
, (15)

where:
• �̄�1 is a (spatial) light path drawn from the path space 𝛀 with the
probability density 𝑞1;

• �̄�2 is a material path drawn from the fixed reference path space �̂�
(that is typically set to 𝛀(𝜃0)) with the probability density 𝑞2;

• �̄�3 and �̄�4 are boundary paths drawn from the boundary path
space 𝜕�̂� with the probability densities 𝑞3 and 𝑞4, respectively.
In practice, we use unidirectional path tracing (PT) with next-

event estimation (NEE) to sample the ordinary paths �̄�1 and �̄�2. The
boundary paths �̄�3 and �̄�4, on the other hand, can be importance
sampled using several recent techniques [Zhang et al. 2020; Yan et al.
2022; Zhang et al. 2023]. In this paper, we adopt the basic approach
introduced by Zhang et al. [2020].

Simple case. When the parameter 𝜃 controls only material proper-
ties (e.g., surface roughness) but not object geometries, the boundary
components in the differential path integrals (12, 14) vanish, leading
to:

𝜕𝜃 𝐼 =

∫
𝛀

𝜕𝜃 𝑓 (�̄�) d𝜇 (�̄�), (16)

𝜕𝜃 E
[
⟨𝐼 ⟩2] = ∫

𝛀

𝜕𝜃 ℎ(�̄�) d𝜇 (�̄�) . (17)

This further causes the estimator in Eq. (15) to simplify to:

⟨𝜕𝜃 V [⟨𝐼 ⟩]⟩ = −2
𝑓 (�̄�1)
𝑞1 (�̄�1)

𝜕𝜃 𝑓 (�̄�2)
𝑞1 (�̄�2)

+ 𝜕𝜃ℎ(�̄�2)
𝑞1 (�̄�2)

, (18)

where �̄�1 and �̄�2 are independent path samples drawn from 𝑞1.

4.2 Path-Sampling Probability
A significant difference between our newly introduced differential
path integrals (14) and the ordinary (12) is the need to differenti-
ate the probability density 𝑞(�̄�) for sampling a path �̄�—which is a
component of the function ℎ defined in Eq. (6).

In what follows, we discuss the expression of 𝑞 resulting from the
widely adopted (unidirectional) path tracing (PT) with next-event es-
timation (NEE). Starting with the segment (𝒙𝑁 , 𝒙𝑁−1) with 𝒙𝑁 on a
detector, this process traces the path backward by iteratively adding
vertices 𝒙𝑁−2, 𝒙𝑁−3, . . . until getting 𝒙0 on a light source. Then, the
probability density 𝑞(�̄�) of a path �̄� = (𝒙0, . . . , 𝒙𝑁 ) satisfies that

𝑞(�̄�) = 𝑞(𝒙𝑁 , 𝒙𝑁−1)
(
𝑁−2∏
𝑛=1

𝑞bsdf (𝒙𝑛 | 𝒙𝑛+1, 𝒙𝑛+2)
)
𝑞light (𝒙0 | 𝒙1),

(19)
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where the joint probability 𝑞(𝒙𝑁 , 𝒙𝑁−1) emerges from camera-ray
sampling, and the conditional probabilities 𝑞bsdf (𝒙𝑛 | 𝒙𝑛+1, 𝒙𝑛+2)
and 𝑞light (𝒙0 | 𝒙1) emerge from BSDF and light sampling, respec-
tively. We note that all the probability densities on the right-hand
side of Eq. (19) use the surface-area measure.

Continuity. We recall that our derivations in §4.1 assume that 𝑞
is 𝐶0 except across visibility boundaries. In practice, this is a mild
assumption because:
• The probability 𝑞bsdf (𝒙𝑛 | 𝒙𝑛+1, 𝒙𝑛+2) resulting from BSDF sam-
pling is normally 𝐶0 for all 𝒙𝑛 that is visible to 𝒙𝑛+1 (i.e., with
V(𝒙𝑛 ↔ 𝒙𝑛+1) = 1).

• The probability 𝑞light (𝒙0 | 𝒙1) given by light sampling—which
typically amounts to drawing 𝒙0 from surfaces of light sources
without considering the visibility V(𝒙0 ↔ 𝒙1)—is typically 𝐶0

with respect to 𝒙0.
Therefore, 𝜃 -dependent discontinuities of the path-sampling proba-
bility 𝑞(�̄�) in Eq. (19) are naturally aligned with those of the mea-
surement contribution 𝑓 , allowing the differentiation of Eq. (13)
using Eq. (14).

Russian roulette. A common technique to avoid generating in-
finitely long light paths is Russian roulette: At each intermediate
vertex 𝒙𝑛 of a path, the sampling process conducts a binomial trial
on the “survival” of the path with the probability 𝑞survival (𝒙𝑛). If
the path survives, the tracing process continues and the next vertex
𝒙𝑛−1 is drawn. Otherwise, the sampling process terminates, and the
(partially sampled) path is discarded. This results in the following
probability density:

𝑞RR (�̄�) := 𝑞(�̄�)
𝑁−1∏
𝑛=1

𝑞survival (𝒙𝑛), (20)

where 𝑞(�̄�) is defined in Eq. (19).
Several heuristics [Vorba and Křivánek 2016; Rath et al. 2022] have

been introduced in forward rendering to set the survival probabili-
ties 𝑞survival. Our technique is largely orthogonal to these methods
and validated in Fig.4.

Multiple importance sampling. Another commonly adopted tech-
nique for robust Monte Carlo rendering is multiple importance
sampling (MIS). When using𝑀 path sampling strategies with cor-
responding probability densities 𝑞1, 𝑞2, . . . , 𝑞𝑀 , an MIS estimator
takes the form:

⟨𝐼 ⟩MIS =

𝑀∑︁
𝑚=1

𝑤𝑚 (�̄�𝑚) 𝑓 (�̄�𝑚)
𝑞𝑚 (�̄�𝑚) , (21)

where �̄�𝑚 is a light path drawn from 𝑞𝑚 , and𝑤𝑚 is a nonnegative
weight function satisfying

∑𝑀
𝑚=1𝑤𝑚 (�̄�) = 1 for all �̄� .

In practice, a unidirectional path tracer typically use 𝑀 = 2
strategies that are identical except for the sampling of the light
vertex 𝒙0 where they use light and BSDF sampling, respectively.

The second moment of this MIS estimator in Eq. (21) equals

E
[
⟨𝐼 ⟩2

MIS
]
=

∫
𝛀
𝑀
ℎMIS (�̄�1, . . . , �̄�𝑀 )

𝑀∏
𝑚=1

d𝜇 (�̄�𝑚), (22)

where

ℎMIS (�̄�1, . . . , �̄�𝑀 ) :=

(
𝑀∑︁
𝑚=1

𝑤𝑚 (�̄�𝑚) 𝑓 (�̄�𝑚)
𝑞𝑚 (�̄�𝑚)

)2

𝑞(�̄�1, . . . , �̄�𝑀 ),

(23)
with 𝑞(�̄�1, . . . , �̄�𝑀 ) denoting the joint probability for sampling light
paths �̄�1, . . . , �̄�𝑀 .
Lastly, the derivative 𝜕𝜃 E[⟨𝐼 ⟩2

MIS] of Eq. (22) can be obtained
using the same approach described in §4.1.

Relation With Prior Work
Previously, Weier et al. [2021] have also attempted to differenti-
ate rendering variance (4) with respect to surface roughness. Their
publicly available implementation [Weier 2021] is built uponMit-
suba3 [Jakob et al. 2022] and uses the moment integrator—which
implements Eq. (7)—to obtain unbiased estimates of the second
moment E[⟨𝐼 ⟩2].
When estimating the derivative 𝜕𝜃 E[⟨𝐼 ⟩2], Weier et al. [2021]

have simply applied automatic differentiation (AD) to the moment
integrator. Unfortunately, sinceMitsuba3 uses detached sampling
[Zeltner et al. 2021] (i.e, does not differentiate probability densities),
this leads to an estimator

𝜕𝜃 𝑓
2 (�̄�)

𝑞2 (�̄�)
, (24)

which mismatches our unbiased variant based on Eq. (17):

𝜕𝜃ℎ(�̄�)
𝑞(�̄�) =

1
𝑞(�̄�) 𝜕𝜃

(
𝑓 2 (�̄�)
𝑞(�̄�)

)
. (25)

As we will demonstrate in §6, using the estimator in Eq. (24) can lead
to very high bias in derivative estimates that significantly reduces
the quality of inverse rendering results.
Compared with Weier et al.’s method [2021], our technique not

only enjoys unbiased derivative estimates but also offers the gener-
ality to differentiate with respect to object geometries and sampling
probabilities.

5 Variance-Aware Inverse Rendering
Leveraging recent advances in differentiable rendering [Zhang et al.
2020; Bangaru et al. 2020], most existing physics-based inverse-
rendering pipelines [Luan et al. 2021; Sun et al. 2023; Yan et al.
2023] seek for scene parameters 𝜃 that minimize some rendering
bias Lbias (𝐼 , 𝐼0) capturing the difference between the converged
rendering 𝐼 = E[⟨𝐼 ⟩] of the scene and some predetermined target 𝐼0.
With the variance derivative 𝜕𝜃V[⟨𝐼 ⟩] derived in §4, our tech-

nique enables the differentiation of variance-aware losses that, in
turn, lead to an important application we call variance-aware inverse
rendering. In what follows, we discuss these aspects in more details.

Variance-aware losses. A variance-aware loss takes the form:

L[⟨𝐼 ⟩] := Lbias (𝐼 , 𝐼0) + 𝜆V[⟨𝐼 ⟩], (26)

where 𝜆 ∈ R>0 is a weight for the variance component.
The commonly used Mean Square Error (MSE) [Pegoraro 2016,

§4.4.9] is essentially a specific form of Eq. (26) with the rendering
bias Lbias set to squared 𝐿2 and 𝜆 = 1:

𝑀𝑆𝐸 [⟨𝐼 ⟩] = E[(⟨𝐼 ⟩ − 𝐼0)2] := (𝐼 − 𝐼0)2 + V[⟨𝐼 ⟩] . (27)
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(a) 𝐼 (b) ⟨𝐼 ⟩𝐾 (c) V[ ⟨𝐼 ⟩𝐾 ] (d) 𝜕𝜃 V[ ⟨𝐼 ⟩𝐾 ] (prior) (e) 𝜕𝜃 V[ ⟨𝐼 ⟩𝐾 ] (ours) (f) 𝜕𝜃 V[ ⟨𝐼 ⟩𝐾 ] (ref)
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Fig. 3. Validation: We compare derivative estimates of rendering variances. (a) Converged path-tracing results. (b) Path-tracing results using 𝐾 = 64 samples
per pixel. (c) Variance of the estimator used in (b). For better visualization, we apply a sigmoid remapping to all pixel values. (d, e) Variance derivatives
estimated (in equal sample and time) using the baseline [Weier et al. 2021] and our methods, respectively. (f) finite-difference references (computed in
significantly more time).
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In this case, the rendering bias (𝐼 − 𝐼0)2 can be estimated in an
unbiased fashion using the dual-buffer method [Deng et al. 2022]:

⟨(𝐼 − 𝐼0)2⟩ = (⟨𝐼1⟩ − 𝐼0) (⟨𝐼2⟩ − 𝐼0), (28)

where ⟨𝐼1⟩ and ⟨𝐼2⟩ are independent Monte Carlo renderings.

Modeling rendering time. When the parameter 𝜃 strongly affects
the computational speed of the estimator ⟨𝐼 ⟩, we further generalize
Eq. (26) to

L∗ [⟨𝐼 ⟩] := Lbias (𝐼 , 𝐼0) + 𝜆∗ 𝑡 [⟨𝐼 ⟩] V[⟨𝐼 ⟩], (29)

where 𝑡 [⟨𝐼 ⟩] predicts the execution time of the estimator ⟨𝐼 ⟩.
We note that, when 𝑡 [⟨𝐼 ⟩] is a constant, Eqs. (26) and (29) are

equivalent with 𝜆 = 𝜆∗ 𝑡 [⟨𝐼 ⟩].

Modeling multi-sample estimators. Our derivations in §4 focus on
the estimator ⟨𝐼 ⟩ expressed in Eq. (3) that uses one path sample �̄� .
On the other hand, most practical Monte Carlo rendering settings
use 𝐾 independent and identically distributed (i.i.d.) samples {�̄�𝑘 :
𝑘 = 1, 2, . . . , 𝐾}:

⟨𝐼 ⟩𝐾 :=
1
𝐾

𝐾∑︁
𝑘=1

𝑓 (�̄�𝑘 )
𝑞(�̄�𝑘 )

. (30)

To estimate the variance and its derivative of the 𝐾-sample estima-
tor ⟨𝐼 ⟩𝐾 , the number of sample paths needed by a naïve method
scales with 𝐾—which can lead to slow performance when 𝐾 is large.
To address this problem, we leverage the relations

E[⟨𝐼 ⟩𝐾 ] = E[⟨𝐼 ⟩] = 𝐼 , V[⟨𝐼 ⟩𝐾 ] =
1
𝐾
V[⟨𝐼 ⟩], (31)

allowing the variance-aware losses in Eqs. (26) and (29) to be evalu-
ated using only the single-sample estimator ⟨𝐼 ⟩:

L[⟨𝐼 ⟩𝐾 ] = Lbias (E[⟨𝐼 ⟩], 𝐼0) +
𝜆

𝐾
V[⟨𝐼 ⟩], (32)

L∗ [⟨𝐼 ⟩𝐾 ] = Lbias (E[⟨𝐼 ⟩], 𝐼0) + 𝜆∗ 𝑡 [⟨𝐼 ⟩] V[⟨𝐼 ⟩], (33)

where Eq. (33) further assumes 𝑡 [⟨𝐼 ⟩𝐾 ] to be proportional to 𝑡 [⟨𝐼 ⟩]
with respect to the parameter 𝜃 .

It is worth noting that, the number of samples (per pixel) used for
estimating Eqs. (32) and (33) and their derivatives—which we term
as the training spp—does not have to equal 𝐾 . We set the training
spp to no more than 32 for all results in this paper.

Variance-aware inverse rendering. Leveraging our technique ex-
pressed in §4, we can now differentiate the variance-aware losses
in Eqs. (32) and (33):

𝜕𝜃L[⟨𝐼 ⟩𝐾 ] =
𝜕Lbias
𝜕𝐼

(𝜕𝜃 𝐼 ) +
𝜆

𝐾
𝜕𝜃 V[⟨𝐼 ⟩], (34)

𝜕𝜃L∗ [⟨𝐼 ⟩𝐾 ] =
𝜕Lbias
𝜕𝐼

(𝜕𝜃 𝐼 ) + 𝜆∗ 𝜕𝜃 (𝑡 [⟨𝐼 ⟩] V[⟨𝐼 ⟩]), (35)

where 𝜕𝜃 𝐼 follows in Eq. (12) and can be estimated using previous
differentiable rendering methods [Zhang et al. 2020, 2023].
This leads to an important application which we call variance-

aware inverse rendering: Given a Monte Carlo estimator ⟨𝐼 ⟩𝐾 and
a virtual scene (that determines the path space 𝛀), the goal is to
slightly alter the estimator and/or the scene (by tuning the value of
some parameter 𝜃 ) so that some predetermined variance-aware loss
is minimized. The resulting altered estimator and/or scene offer a
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Fig. 4. Validation:We validate our estimates of the derivatives 𝜕𝜃V[ ⟨𝐼 ⟩𝐾 ]
with respect to the Russian-roulette survival probability at first three
bounces. The references are obtained using finite differences.

good balance between rendering bias (with respect to the unaltered
configuration) and rendering variance.

6 Results
We implement our Monte Carlo estimators described in §4 and §5 on
the GPU using theDr.Jit numerical backend [Jakob et al. 2022]. In the
following, we show differentiable-rendering and inverse-rendering
results in §6.1 and §6.2, respectively.

6.1 Validations and Evaluations
Validations. To validate our technique, we compare in Figure 3 as

well as in the supplement our estimates of the derivatives 𝜕𝜃V[⟨𝐼 ⟩𝐾 ]—
where ⟨𝐼 ⟩𝐾 is a unidirectional path tracer using next-event esti-
mation (NEE) and 𝐾 = 64 sample paths per pixel—to references
computed using finite differences (FD).
The One Ring and Two Rings examples contain glossy rings on

a diffuse surface lit by an area light, and derivatives are estimated
with respect to the surface roughness of the rings. Creature and
Cube involve two diffuse objects encapsulated inside glass sphere
and cube, respectively, under area lighting. We differentiate with
respect to the surface roughness of the glass containers. For all
three examples, our technique produces derivative estimates closely
matching the references. The method used by Weier et al. [2021], as
discussed at the end of §4, suffers from very high bias in derivative
estimates.
The remaining examples in Figure 3 use differentiation beyond

surface roughness—which is not supported by Weier et al.’s [2021]
method. Our derivative estimates closely match the finite-difference
references for all examples.
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ReferenceReference Ours (equal-time)Ours (equal-time) Uniform (equal-time)Uniform (equal-time)

Fig. 5. Ablation: We compare variance derivatives for the Tree scene
estimated using different sampling methods. In this case, the derivatives
are emerge solely from the boundary component of Eq. (14).

IO Cube uses a similar configuration as the Cube scene except
for using a textured object. Tree contains a tree-like object lit by a
small area light, casting soft shadows on the ground. The deriva-
tives of this example emerge solely from the boundary integrals in
Eqs. (12) and (14). For both examples, we differentiate with respect
to a parameter that controls the geometric scaling and emission of
the light simultaneously so that its total power remains constant.

Lastly, the Dodoco scene in Figure 4 contains three diffuse objects
and a mirror inside a Cornell box. We differentiate the rendering
variance with respect to the Russian-roulette survival possibilities.
Specifically, we use a simplified scenario where these probabilities
are set solely based on the number of bounces: 𝑞survival (𝒙𝑛) :=
𝑞survival
𝑁−𝑛 for any 𝒙𝑛 . In other words, we use 𝑞survival

𝑘
∈ [0, 1) to con-

trol the survival probability at the 𝑘-th bounce from the camera for
𝑘 = 1, 2, . . .. Based on this setting, we estimate derivatives of render-
ing variance with respect to 𝑞survival

1 , 𝑞survival
2 , and 𝑞survival

3 , respec-
tively. Our results match the finite-difference references closely.

Estimating boundary integrals. We demonstrate in Figure 5 the
effectiveness of importance sampling techniques for estimating
the boundary integral in Eq. (14). At equal time, our technique
built upon the previous guiding method by Zhang et al. [2020]
significantly outperforms simple uniform sampling. We note that
the effectiveness can be further improved by adopting more recent
techniques [Yan et al. 2022; Zhang et al. 2023].

6.2 Variance-Aware Inverse Rendering Results
We now show variance-aware inverse rendering results. Our op-
timization time ranges from 20 seconds to 10 minutes on an RTX
4090 GPU. The performance is mainly affected by the number of
differentiated parameters, the image resolution, and the depth of
the light path. Differentiating the geometry can take more time due
to the need of estimating additional boundary integrals.

Ablation. To demonstrate the effect of different𝐾 values, we show
variance-aware inverse rendering results of the Two Ring scene in
Figure 6. The optimizations use the variance-aware loss defined in
Eq. (32) and the training spp set to 16. With lower 𝐾 values, the
loss is dominated by the variance term, resulting in more drastic
modifications of the scene (and thus higher rendering bias). With
higher 𝐾 values, in contrast, the loss is dominated by the bias term,
leading to smaller changes.
In addition, we demonstrate in Figure 7 the importance of un-

biased derivative estimates by comparing variance-aware inverse
rendering results. Both examples use identical settings as Figure 3

OrdinaryOrdinary

OptimizedOptimized

ConvergedConverged

𝐾 = 64 𝐾 = 512 𝐾 = 2048

Fig. 6. Ablation: Variance-aware inverse rendering results of the Two
Rings scene obtained by altering surface roughness of the rings so that
the variance-aware loss (32) with different sample counts (i.e., 𝐾 values) is
minimized. Images in the first two rows are rendered with the correspond-
ing sample counts; Those in the last row are converged renderings of the
optimized scenes.

except for using lower (ordinary) object roughness and𝐾 = 512. The
inverse rendering optimizations use the loss defined in Eq. (32) with
Lbias being the 𝐿2 function and 𝜆 = 1. In the Two Rings example, the
optimization alters the spatially varying roughness of the rings with
the training spp set to 16. The baseline method [Weier et al. 2021]
suffers from over roughening and, thus, a higher variance-aware
loss. For Creature—where the optimization alters a single rough-
ness for the glass sphere and uses a training spp of 32—the baseline
method gets stuck in the initial state. In contrast, our method allows
the optimizations to converge nicely for both examples, and the
resulting altered scenes offer lower loss than the baseline—as shown
in column (e) of the figure.

Additional results. In Figure 8, we show four more inverse ren-
dering results using the same variance-aware loss as Figure 7.
The Creature uses the same setting as Figure 7 except that the

optimization adjusts a parameter controlling the size of the area
light and its brightness (so that the total power of the light remains
constant). The optimized scene, when rendered using the same path
tracer with 𝐾 = 512, offers better overall quality compared with
the Creature result in Figure 7. This demonstrates the practical
usefulness of going beyond surface roughening.
The Tree example uses a similar setting as in Figure 3. The op-

timization searches for the optimal light size and brightness for a
path tracer using one sample per pixel. With only 𝐾 = 1 sample, the
loss is dominated by variance, forcing the optimizing to shrink the
area light significantly.
The Spotlight example shows a textured diffuse object lit by a

bright spotlight and a dim ambient light. Initialized with a constant
0.5, we optimize the sampling probability of the spotlight individ-
ually for each pixel. For this example, we visualize the optimized
sampling probabilities in column (e).
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Russian roulette. Lastly, in Figure 9, we use the sameDodoco scene
as Figure 4 and show a proof-of-concept example where Russian-
roulette survival probabilities are optimized. To drive the optimiza-
tion, we use the loss expressed in Eq. (33) with the execution-time-
predicting function set as

𝑡 [⟨𝐼 ⟩] := 𝑡0 +
∑︁
𝑘>0

𝑡𝑘

𝑘∏
𝑘 ′=1

𝑞survival
𝑘 ′ , (36)

where 𝑡𝑘 ∈ R>0 is a pre-computed constant measuring the fraction
of render time needed by all paths with exactly 𝑘 bounces (without
Russian roulette).

At equal time, rendering using our optimized survival probabili-
ties produces notably cleaner result.

7 Discussion and Conclusion
Limitations and future work. Our derivations in §4.1 rely on the

assumption that the probability density 𝑞 shares the same visibility-
driven discontinuity points as the measurement contribution 𝑓 . Al-
though this is a mild assumption, it may need to be relaxed to handle
some complex sampling procedures like delta tracking [Woodcock
et al. 1965]. In addition, although our theory is not restricted to any
specific sampling method, our analysis in §4.2 and implementation
focus on unidirectional path tracing. Thus, applying our theory to
more general cases such as bidirectional path tracing (BDPT) could
be an interesting future topic.

Conclusion. In this paper, we derived a path-integral formula-
tion for derivatives of rendering variance with respect to not only
scene parameters but also sampling probabilities. Based on this for-
mulation, we introduced unbiased Monte Carlo estimators for the
derivatives. In addition, we discussed an important application of
our technique—variance-aware inverse rendering—which concerns
with altering a virtual scene and/or an estimator to offer a good
balance between bias and variance. We validated our technique
by comparing derivative estimates to finite-difference references
and demonstrated the effectiveness of our method using several
synthetic variance-aware inverse rendering examples.
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Fig. 7. Ablation:We demonstrate the importance of unbiased gradient estimates by comparing variance-aware inverse rendering results using gradients
generated with our technique and the baseline approach [Weier et al. 2021].
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Fig. 8. Variance-aware inverse rendering results optimizing area-light sizes (Creature, Tree) and per-pixel sampling probability (Spotlight).
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Fig. 9. Variance-aware inverse rendering result optimizing Russian-roulette survival probabilities.
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